Telegram Group & Telegram Channel
MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview



tg-me.com/machinelearning_interview/1567
Create:
Last Update:

MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1567

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Machine learning Interview from ca


Telegram Machine learning Interview
FROM USA